On constructions of semigroups

K. P. Shum 1 *

Institute of Mathematics
Yunnan University
Kunming 650091, China
E-mail 1: kpshum@ynu.edu.cn

X. M. Ren 2 † and C. M. Gong 3

Department of Mathematics
Xi’an University of Architecture and Technology
Xi’an 710055, China
E-mail 2: xmren@xauat.edu.cn

This paper is presented in the international conference of algebra and mathematical logics dedicated to the 100th years Anniversary of V. V. Morozov in Kazan University in Tartanstan.

Abstract

The aim of this paper is to present some methods of constructions of semigroups by using the structure theory of semigroups within the class of regular semigroups, the quasi-regular of semigroups and also in the class of abundant semigroups. In particular, some basic notations and structure theorems of some well known semi-groups are exhibited. For example, the Rees matrix semigroups over the 0-group G^0 and its generalizations, bands, E-ideal quasi-regular semigroups, C^*-quasiregular semigroups, L^*-inverse semigroups and Q^*-inverse semigroups.

*The research of the corresponding author is partially supported by a grant of Wu Jiehyee Charitable Foundation, Hong Kong 2007/10
†The research is supported by a grant of National Natural Science Foundation of China (Grant No:10971160).
AMS Mathematics Subject Classification (2000): 20M 10

Keywords: Regular semigroups; Quasi-regular semigroups; Abundant semigroups; Rees matrix.

1 Rees matrix semigroups and its generalizations

For notation and terminologies not given in this paper, the reader is referred to [1]-[3], [6], [14]-[15], [17], [24]-[25], [28]-[29], [34] and [39].

We call a semigroup S a completely 0-simple semigroup if S is 0-simple and contains a primitive idempotent.

The following procedures for producing a completely 0-simple semigroups was given by D. Rees in 1940.

We first let G be a group with the identity element e and I, Λ non-empty sets. Let $P = (p_{\lambda i})$ be a $\Lambda \times I$ matrix with the entries in an 0-group $G^0(= G \cup \{0\}$). Now, suppose that P is regular in the sense that no row or no column of P consists entirely of zeros.

Formally, we write

\[
(\forall i \in I)(\exists \lambda \in \Lambda) \quad p_{\lambda i} \neq 0,
\]

\[
(\forall \lambda \in I)(\exists i \in I) \quad p_{\lambda i} \neq 0.
\] (1)

Let $S = (I \times G \times \Lambda) \cup \{0\}$, and define a multiplication on S by

\[
(i,a,\lambda) \cdot (b,j,\mu) = \begin{cases}
(i, ap_{\lambda j}b, \mu) & \text{if } p_{\lambda j} \neq 0, \\
0 & \text{if } p_{\lambda j} = 0,
\end{cases}
\]

\[
(i,a,\lambda) \cdot 0 = 0 \quad (i,a,\lambda) = 0 \cdot 0 = 0.
\] (2)

The semigroup constructed by this method is denoted by $M^0[G; I, \Lambda; P]$ and will be called the $I \times \Lambda$ matrix semigroup over the 0-group G^0 with the regular sandwich matrix P. We first state the following well known Rees matrix theorem.

Theorem 1.1. (The Rees Theorem, [17]) Let G^0 be a 0-group, let I, Λ be non-empty sets and $P = (p_{\lambda i})$ a $\Lambda \times I$ matrix with entries in G^0. Suppose that P is regular in the sense of (1). Let $S = (I \times G \times \Lambda) \cup \{0\}$, and define a multiplication on S by (2). Then S is a completely 0-simple semigroup.
Conversely, every completely 0-simple semigroup is isomorphic to the semigroup constructed in the above method.

M. V. Lawson in 1990 gave another abstract characterization of the Rees matrix semigroups in [18] as follows:

Let S be a monoid with identity 1 and zero element 0, having the group of units $G(S)$. Let Λ and I be non-empty sets and P a $\Lambda \times I$ matrix over S with entries $p_{\lambda i}$ where $(\lambda, i) \in \Lambda \times I$. The matrix semigroup $M = M^0(S; I, \Lambda; P)$ is the set triples $I \times S \times \Lambda$ with a zero 0 adjoined and where we identity all the elements of the form $(i, 0, \lambda)$ with 0, under a multiplication given by

$$(i, x, \lambda) \cdot (j, y, \mu) = \begin{cases} (i, xp_{\lambda j}y, \mu) & \text{if } p_{\lambda j} \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 1.2. ([18]) Let S be a Rees semigroup with $e \in U \setminus \{0\}$. Then

(i) S is abundant if and only if eSe is abundant;

(ii) S is regular if and only if eSe is regular;

(iii) S is inverse if and only if S is reduced, eSe is inverse and $Reg_U(S)$ is a subsemigroup (for details, see [18]).

To further generalize the Rees matrix semigroup constructed above, we recently establish in [30] the following construction theorem of semigroups by using semigroupoids.

A semigroupoid is a pair (S, S^0) consisting of a set S of morphisms and a set S^0 of objects, together with the functions $\tau : S \to S^0$ and $\omega : S \to S^0$, and a function μ which is so called “multiplication” from the set $S * S = \{(x, y) \in S \times S \mid \tau(x) = \omega(y)\}$ to S; we usually write xy instead of $\mu(x, y)$, and if $(x, y) \in S * S$, then we write $\exists xy$; in addition, the following two axioms hold:

(C1) If $\exists xy$, then $\tau(xy) = \tau(y)$ and $\omega(xy) = \omega(x)$;

(C2) $x(yz) = (xy)z$ whenever the products are defined.

Let $A, B \in S^0$. Then, in this case, the set $\text{Mor}(A, B) = \{x \in S \mid \tau(x) = A \text{ and } \omega(x) = B\}$ is called the Mor-set from A to B. A semigroupoid S is said to be strongly connected if each Mor-set (A, B) is non-empty.

Let I and Λ be two non-empty sets and S a strongly connected semigroupoid. Define two surjective functions $F : I \to S^0$ and $G : \Lambda \to S^0$.

Now, let $p : \Lambda \times I \to S$ be a function such that

$$p_{(\lambda, i)} \in \text{Mor}(F(i), G(\lambda)).$$

We simply write $p_{(\lambda, i)} = p_{\lambda i}$ so that the entries of the $\Lambda \times I$ matrix $P = (p_{\lambda i})$ are $p_{\lambda i}$.
Let \(M = M(S, F, G; P) \) be the following set
\[
M = \{(i, x, \lambda) \in I \times S \times \Lambda \mid x \in \text{Mor}(G(\lambda), F(i))\},
\]
equipped with the multiplication given by \((i, x, \lambda)(j, y, \mu) = (i, xp_{\lambda}jy, \mu)\).

Then, it is easy to check that the set \(M = \{(i, x, \lambda) \in I \times S \times \Lambda \mid x \in \text{Mor}(G(\lambda), F(i))\} \) forms a semigroup under the above multiplication. We call \(M \) a Rees matrix semigroup over a semigroupoid (for details, see [30]).

2 Presentations of bands and its generalizations

A semigroup \(S \) is called a band if every element of \(S \) is an idempotent.

The following general structure theorem for bands was given by M. Petrich in [19].

Let \(X \) be a set. We always write \(T(X)(T^*(X)) \) for the semigroup of all left (right) transformations on the set \(X \). Also, we use the symbol \(\langle \varphi \rangle \) to denote the value of a constant mapping \(\varphi \) acting on the set \(X \).

Theorem 2.1. ([17], Theorem 4.4.5) Let \(Y \) be a semilattice and let \(\{E_{\alpha} \mid \alpha \in Y\} \) be a family of pairwise disjoint rectangular bands indexed by \(Y \). For each \(\alpha \), let \(E_{\alpha} = I_{\alpha} \times \Lambda_{\alpha} \), and for each pair \(\alpha, \beta \) of elements of \(Y \) such that \(\alpha \geq \beta \) let \(\Phi_{\alpha, \beta} : E_{\alpha} \to T_{I_{\beta}} \times T_{\Lambda_{\beta}} \) be a morphism, where
\[
a\Phi_{\alpha, \beta} = (\phi_{\alpha, \beta}^{a}, \psi_{\alpha, \beta}^{a}) \quad (a \in E_{\alpha}).
\]
Suppose also that
(i) if \(a = (i, \mu) \in E_{\alpha} \), then \(\phi_{\alpha, a}^{i} \) and \(\psi_{\alpha, a}^{i} \) are constant maps, and
\[
\langle \phi_{\alpha}^{(i, \mu)} \rangle = i, \quad \langle \psi_{\alpha}^{(i, \mu)} \rangle = \mu;
\]
(ii) if \(a \in E_{\alpha}, b \in E_{\beta} \) and \(\alpha \beta = \gamma \), then \(\phi_{\alpha, \beta}^{a} \) and \(\psi_{\alpha, \beta}^{a} \) are constant maps;
(iii) if \(\langle \phi_{\alpha, \beta}^{a} \rangle \) is denoted by \(j \) and \(\langle \psi_{\alpha, \beta}^{a} \rangle \) by \(\nu \), then, for all \(\delta \leq \gamma \),
\[
\phi_{\delta}^{(j, \nu)} = \phi_{\delta}^{a} \phi_{\gamma}^{b}, \quad \psi_{\delta}^{(j, \nu)} = \psi_{\delta}^{a} \psi_{\gamma}^{b}.
\]

Let \(B = \bigcup \{E_{\alpha} \mid \alpha \in Y\} \) and define the product of \(a \) in \(E_{\alpha} \) and \(b \in E_{\beta} \) by
\[
a \ast b = (\langle \phi_{\gamma}^{a} \phi_{\gamma}^{b} \rangle, \langle \psi_{\gamma}^{a} \psi_{\gamma}^{b} \rangle),
\]
where $\gamma = \alpha \beta$. Then (B, \ast) is a band, whose J-classes are the rectangular bands E_α.

Conversely, every band is determined in this way by a semilattice Y, a family of rectangular bands $E_\alpha = I_\alpha \times \Lambda_\alpha$ indexed by Y, and a family of morphisms $\Phi_{\alpha,\beta} : E_\alpha \rightarrow T_{I_\beta} \ast T_{\Lambda_\beta}$ ($\alpha, \beta \in Y, \alpha \geq \beta$) satisfying (i), (ii) and (iii).

An element a of a semigroup S is called regular if there exists $x \in S$ such that $a = axa$; An element a of S is called quasi-regular if there exists a natural number n such that a^n is regular. A semigroup S is called regular (quasi-regular), if every element of S is regular (quasi-regular). It is easy to see that quasi-regular semigroups are generalizations of regular semigroups.

As a generalization of bands, X. M. Ren and Y. Q. Guo introduced and investigated the structure of the E-ideal quasi-regular semigroups in 1989.

According to [23], we call a semigroup S an E-ideal quasi-regular semigroup if S is quasi-regular and $E(S)$ is an ideal of S.

For the E-ideal quasi-regular semigroups, X. M. Ren and Y. Q. Guo gave the following constructions in [23].

The set Q with a partial operation is called a partial power breaking semigroup if there is a partial binary operation on the set Q such that for any $p, q, r \in Q, (pq)r \in Q$ (well-defined) if and only if $p(qr) \in Q$; in this case $(pq)r = p(qr)$ holds, and for every $a \in Q$, there exists $n \in \mathbb{N}$ such that $a^n \notin Q$.

Let Y be a semilattice and let $\{E_\alpha = I_\alpha \times \Lambda_\alpha \mid \alpha \in Y\}$ be a family of pairwise disjoint rectangular bands. Let Q be a partial power breaking semigroup together with the mapping $\varphi : Q \rightarrow \bigcup_{\alpha \in Y} E_\alpha$ satisfying the following properties:

(i) For any $a, b \in Q$, if $\varphi(a) \in E_\alpha, \varphi(b) \in E_\beta$ and $\alpha \beta = \gamma$ then $ab \in Q$ implies $\varphi(ab) \in E_\gamma$. For every pair $\alpha, \beta \in Y$ with $\alpha \geq \beta$, we can construct two mappings:

$$\Psi_{\alpha,\beta} : \varphi^{-1}(E_\alpha) \rightarrow T_{I_\beta} \ast T_{\Lambda_\beta},$$

$$a \mapsto (\phi^a_\beta, \psi^a_\beta)$$

and

$$\Phi_{\alpha,\beta} : E_\alpha \rightarrow T_{I_\beta} \ast T_{\Lambda_\beta},$$

$$e \mapsto (\phi^e_\beta, \psi^e_\beta)$$

that satisfy the following properties:
(ii) If \(e = (i, j) \in E_\alpha \), then \(\phi^e_\alpha, \psi^e_\alpha \) are constant transformation on \(I_\alpha \) and \(\Lambda_\alpha \), respectively, and \(\langle \phi^e_\alpha \rangle = i, \langle \psi^e_\alpha \rangle = j \). Here, we denote the values of the constant transformations by \(\langle \phi^e_\alpha \rangle \) and \(\langle \psi^e_\alpha \rangle \), respectively.

(iii) 1° If \(e \in E_\alpha \), \(f \in E_\beta \), and \(\delta \leq \gamma = \alpha \beta \), then \(\phi^e_\gamma \phi^f_\gamma \) and \(\psi^e_\gamma \psi^f_\gamma \) are transformations on \(I_\gamma \) and \(\Lambda_\gamma \), respectively. Let \(\langle \phi^e_\gamma \phi^f_\gamma \rangle = i, \langle \psi^e_\gamma \psi^f_\gamma \rangle = j \), we have
\[
\phi^{(i,j)}_\delta = \phi^e_\delta \phi^f_\delta, \psi^{(i,j)}_\delta = \psi^e_\delta \psi^f_\delta.
\]

2° If \(e \in E_\alpha, a \in Q, \varphi(a) \in E_\beta \) and \(\delta \leq \gamma = \alpha \beta \), then \(\phi^a_\beta \phi^b_\gamma, \psi^a_\beta \psi^b_\gamma \) and \(\psi^a_\gamma \psi^b_\gamma \) are constant transformation on \(I_\gamma \) and \(\Lambda_\gamma \), respectively. Let \(\langle \phi^a_\gamma \phi^b_\gamma \rangle = k, \langle \psi^a_\gamma \psi^b_\gamma \rangle = l, \langle \phi^a_\gamma \phi^b_\gamma \rangle = k', \) and \(\langle \psi^a_\gamma \psi^b_\gamma \rangle = l' \), we have
\[
\phi^{(k,l)}_\delta = \phi^a_\delta \phi^b_\delta, \psi^{(k,l)}_\delta = \psi^a_\delta \psi^b_\delta,
\]
\[
\phi^{(k',l')}_\delta = \phi^a_\delta \phi^b_\delta, \phi^{(k',l')}_\delta = \psi^a_\delta \psi^b_\delta.
\]

3° If \(a, b \in Q, ab \notin Q, \varphi(a) \in E_\alpha, \varphi(b) \in E_\beta \) and \(\delta \leq \gamma = \alpha \beta \), then \(\phi^a_\beta \phi^b_\gamma, \psi^a_\beta \psi^b_\gamma \) are constant transformations on \(I_\gamma \) and \(\Lambda_\gamma \), respectively. Let \(\langle \phi^a_\gamma \phi^b_\gamma \rangle = u, \langle \psi^a_\gamma \psi^b_\gamma \rangle = v \), we have
\[
\phi^{(u,v)}_\delta = \phi^a_\delta \phi^b_\delta, \psi^{(u,v)}_\delta = \psi^a_\delta \psi^b_\delta.
\]

(iv) If \(a, b \in Q, ab \in Q, \varphi(a) \in E_\alpha, \varphi(b) \in E_\beta \), and \(\delta \leq \gamma = \alpha \beta \), then
\[
\phi^{ab}_\delta = \phi^a_\delta \phi^b_\delta, \psi^{ab}_\delta = \psi^a_\delta \psi^b_\delta.
\]

We now write \(\sum = Q \bigcup_{a \in \gamma} E_\alpha \) and define an operation \(* \) on \(\sum \) as follows:

a) If \(a, b \in Q \) and \(ab \in Q \), then \(a * b = ab \);

If \(a, b \in Q, \varphi(a) \in E_\alpha, \varphi(b) \in E_\beta \) and \(\alpha \beta = \gamma \), but \(ab \notin Q \), then
\[
a * b = (\langle \phi^a_\gamma \phi^b_\gamma \rangle, \langle \psi^a_\gamma \psi^b_\gamma \rangle).
\]

b) If \(e \in E_\alpha, a \in Q, \varphi(a) \in E_\beta \), and \(\alpha \beta = \gamma \), then
\[
a * e = (\langle \phi^a_\gamma \phi^b_\gamma \rangle, \langle \psi^a_\gamma \psi^b_\gamma \rangle),
\]
\[
e * a = (\langle \phi^a_\gamma \phi^b_\gamma \rangle, \langle \psi^a_\gamma \psi^b_\gamma \rangle).
\]
c) If $e \in E_\alpha$, $f \in E_\beta$, and $\alpha \beta = \gamma$, then

$$e * f = (\langle \phi_{\gamma}^e \phi_{\gamma}^f \rangle, \langle \psi_{\gamma}^e \psi_{\gamma}^f \rangle).$$

The above system consisting of \sum and the operation $*$ on \sum is now denoted by $\sum = \sum(Q, \bigcup_{\alpha \in Y} E_\alpha, \Psi, \Phi, \varphi)$.

It is easy to show that $\sum = \sum(Q, \bigcup_{\alpha \in Y} E_\alpha, \Psi, \Phi, \varphi)$ is a semigroup, that is, the above operation $*$ on \sum is associative. We give the following picture to illustrate the relationship between the construction mappings above, where $Q_\alpha = \varphi^{-1}(E_\alpha)$.

Theorem 2.2. ([23]) Let S be a semigroup. Then S is an E-ideal quasi-regular semigroup if and only if S is isomorphic to some semigroup of type $\sum = \sum(Q, \bigcup_{\alpha \in Y} E_\alpha, \Psi, \Phi, \varphi)$.

3 \(\Delta\)-products and generalized \(\Delta\)-products

A regular semigroup S is called a left C-semigroup (in brevity, LC-semigroup) if for any $a \in S$, $aS \subseteq Sa$. In 1991, Zhu, Guo and Shum gave the following characterization theorem for the left C-semigroups in [40].

Theorem 3.1. ([40]) Suppose that S is an orthodox semigroup with a band E of idempotents. Then the following statements on S are equivalent:

(i) S is a left C-semigroup;
(ii) $(\forall e \in E) eS \subseteq Se$;
(iii) $(\forall e \in E)(\forall a \in S) eae = ea$;
(iv) $D^S \cap (E \times E) = L^E$;
(v) S is a semilattice of left groups;
(vi) $L = J$ is a semilattice congruence on S.

7
In studying the structure theory of left \(C \)-semigroups, Guo, Ren and Shum [12] introduced the concept of \(\Delta \)-products of semigroups as follows:

Let \(Y \) be a semilattice. Let \(T = \bigcup_{\alpha \in Y} T_\alpha \) be a semilattice of semigroups \(T_\alpha \) and \(I = \bigcup_{\alpha \in Y} I_\alpha \) a semilattice partition of the set \(I \) on the semilattice \(Y \). For each \(\alpha \in Y \), write \(S_\alpha = T_\alpha \times I_\alpha \); For any \(\alpha, \beta \in Y, \alpha \geq \beta \), define the following mapping

\[
\Psi_{\alpha,\beta} : S_\alpha \rightarrow T_\beta,
\]

\[
a \mapsto \psi_{\alpha,\beta}^a,
\]

satisfying the following conditions:

(P1) If \((u, i) \in S_\alpha, i' \in I_\alpha\), then \(\psi_{\alpha, \alpha}^{(u, i)} i' = i\);

(P2) If \((u, i) \in S_\alpha, (v, j) \in S_\beta\), then

(a) \(\psi_{\alpha, \alpha \beta}^{(u, i)} \psi_{\beta, \alpha \beta}^{(v, j)}\) are constant values mappings on \(I_{\alpha \beta}\), denote the value by \(\langle \psi_{\alpha, \alpha \beta}^{(u, i)} \psi_{\beta, \alpha \beta}^{(v, j)} \rangle\);

(b) If \(\alpha \beta \geq \delta, \langle \psi_{\alpha, \alpha \beta}^{(u, i)} \psi_{\beta, \alpha \beta}^{(v, j)} \rangle = k\), we have \(\psi_{\alpha \beta, \delta}^{(u, i, k)} = \psi_{\alpha, \delta}^{(u, i)} \psi_{\beta, \delta}^{(v, j)}\).

Define a multiplication on the set \(S \) by

\[
(u, i) \ast (v, j) = (uv, \langle \psi_{\alpha, \alpha \beta}^{(u, i)} \psi_{\beta, \alpha \beta}^{(v, j)} \rangle), \quad (u, i) \in S_\alpha, (v, j) \in S_\beta.
\]

where \(uv\) is the product of \(u \) and \(v \) in the semigroup \(T \).

It is easy to verify that \(S = \bigcup_{\alpha \in Y} S_\alpha \) with the operation given above forms a semigroup. The semigroup \(S \) constructed above is called a \(\Delta \)-product of a semigroup \(S \) and a set \(I \) with respect to a semilattice \(Y \) and a structure map \(\psi \) is denoted by \(S = T \Delta Y, \psi I \).

The \(\Delta \)-product of a semigroup \(S = \bigcup_{\alpha \in Y} (T_\alpha \times I_\alpha) \) with a set \(I = \bigcup_{\alpha \in Y} I_\alpha \) with respect to a semilattice \(Y \) and a structure map \(\psi \) can be expressed by the following diagram, where \(\alpha \geq \beta \) for all \(\alpha, \beta \in Y \).
Theorem 3.2. ([12]) Let $T = [Y; G_{\alpha}, \varphi_{\alpha, \beta}]$ be a strong semilattice of group G_{α} and let $I = \bigcup_{\alpha \in Y} I_{\alpha}$ be a semilattice decompositions of a left regular band I for left zero bans I_{α}. Then the Δ-product $S = T \Delta_{Y, \Psi} I$ of T and I with respect to Y is a LC-semigroup; conversely, every LC-semigroup S can be constructed in the above fashion.

According to [36], a quasi-regular semigroup S is called a C^*-quasiregular semigroup if for any $e \in E(S)$, the mapping $\psi_e : S^1 \to eS^1e$ defined by $x \mapsto exe$ is a semigroup homomorphism and $RegS$ is an ideal of S.

There were some characterization theorems of C^*-quasiregular semigroups given by Shum, Ren and Guo in [36].

Theorem 3.3. ([36]) The following statements are equivalent for a semigroup S:

(i) S is a C^*-quasiregular semigroup;
(ii) S is a quasi-completely regular semigroup in which $RegS$ is an ideal of S and $E(S)$ is a regular band;
(iii) S is a quasi-completely regular semigroup such that $eS \cup Se \subseteq RegS$ and the mapping $\varphi_e : E(S) \to eE(S)e$ defined by $f \mapsto efe$ is a semigroup homomorphism for all $e \in E(S)$;
(iv) S is a semilattice of quasi-rectangular groups such that

$$(\forall a \in S)(\exists m \in N) \ a^mS \cup Sa^m \subseteq RegS$$

and $E(S)$ is a regular band;
(v) S is a nil-extension of a quasi-C-semigroup.

It is well-known that the structure of completely regular semigroups can be described by the translational hull of semigroups (see M. Petrich in [20]). Inspired by the idea of M. Petrich, we can also construct a quasi-completely regular semigroup S by using the translations on the semigroup S.

To obtain the structure of C^*-quasiregular semigroups, we consider a more general constructions method for semigroups rather than the Δ-product structure. We call this new structure the generalized Δ-product structure.

We first cite the following concepts.

A mapping θ from a power breaking partial semigroup Q to another one is called a partial homomorphism if $(ab)\theta = a\theta b\theta$, whenever $a, b, ab \in Q$.

9
We are now ready to state the definition of generalized Δ-product of semigroups.

(I) Let τ be a partial homomorphism from a power breaking partial semigroup Q to a semilattice Y; Then, we write $Q_\alpha = \tau^{-1}(\alpha)$, for any $\alpha \in Y$.

(II) Let $T = [Y, T_\alpha, \xi_{\alpha\beta}]$ be a strong semilattice of semigroups T_α, where $\xi_{\alpha\beta}$ is the structure homomorphism. Let $I = \bigcup_{\alpha \in Y} I_\alpha$ and $\Lambda = \bigcup_{\alpha \in Y} \Lambda_\alpha$ be a semilattice partition for the set I and for the set Λ on the semilattice Y respectively. It is well-known that if T_α are groups then the strong semilattice $T = [Y, T_\alpha, \xi_{\alpha\beta}]$ is a Clifford semigroup.

For every $\alpha \in Y$, form the following three sets, namely, the sets

\[\begin{align*}
S^0_\alpha &= Q_\alpha \cup T_\alpha, \\
S^\ell_\alpha &= Q_\alpha \cup (I_\alpha \times T_\alpha), \\
S^r_\alpha &= Q_\alpha \cup (T_\alpha \times \Lambda_\alpha).
\end{align*} \]

(III) For any $\alpha, \beta \in Y$ with $\alpha \geq \beta$, define the following mapping

\[\theta_{\alpha,\beta} : S^0_\alpha \rightarrow T_\beta \text{ by } a \mapsto a\theta_{\alpha,\beta}, \]

and we require that $\theta_{\alpha,\beta}$ satisfies the following conditions.

(P1) (i) $\theta_{\alpha,\beta}|_{T_\alpha} = \xi_{\alpha\beta};$
(ii) If $a \in Q_\alpha$ and $\alpha \geq \beta \geq \gamma$, then $a\theta_{\alpha,\beta}\theta_{\beta\gamma} = a\theta_{\alpha,\gamma};$
(iii) If $a \in Q_\alpha, b \in Q_\beta$ and $ab \in Q_{\alpha\beta}$ with $\alpha \beta \geq \delta$, then

\[(ab)\theta_{\alpha,\beta,\delta} = a\theta_{\alpha,\delta}b\theta_{\beta,\delta}. \]

(IV) For $\alpha, \beta \in Y$ with $\alpha \geq \beta$, define the following two mappings $\varphi_{\alpha,\beta}$ and $\psi_{\alpha,\beta}$

\[\begin{align*}
\varphi_{\alpha,\beta} : S^\ell_\alpha &\rightarrow T(I_\beta) \text{ by } a \mapsto \varphi^a_{\alpha,\beta}; \\
\psi_{\alpha,\beta} : S^r_\alpha &\rightarrow T^*(\Lambda_\beta) \text{ by } a \mapsto \psi^a_{\alpha,\beta}.
\end{align*} \]

Let $\varphi_{\alpha,\beta}$ and $\psi_{\alpha,\beta}$ satisfy the following conditions (P1), (p2), (P2)* and (P3)* respectively.

(P2) If $(i, g) \in I_\alpha \times T_\alpha$ and $j \in I_\alpha$, then $\varphi^{(i,g)}_{\alpha,a} j = i$;
(P2)* If $(g, \lambda) \in T_\alpha \times \Lambda_\alpha$ and $\mu \in \Lambda_\alpha$, then $\mu\psi^a_{\alpha,g} = \lambda$;

For the sake of convenience, we write $(i, g)\theta_{\alpha,\beta} = g\theta_{\alpha,\beta}$ and $(g, \lambda)\theta_{\alpha,\beta} = g\theta_{\alpha,\beta}$ for any $(i, g) \in I_\alpha \times T_\alpha$ and $(g, \lambda) \in T_\alpha \times \Lambda_\alpha$.

(P3) Let α, β and $\delta \in Y$ with $\alpha \beta \geq \delta$.
(i) If $a \in S^\ell_\alpha, b \in S^\ell_\beta$ and $ab \in Q_{\alpha\beta}$, then $\varphi^a_{\alpha,\beta}\delta = \varphi^a_{\alpha,\delta}\psi^b_{\beta,\delta}$;
(ii) If $a \in S^\ell_\alpha, b \in S^\ell_\beta$ and $ab \notin Q_{\alpha\beta}$, then $\varphi^a_{\alpha,\beta}\psi^b_{\beta,\alpha}$ is a constant mapping acting on the set $I_{\alpha\beta}$.
Let \(k = \langle \varphi_{a,\alpha,\beta} \varphi_{b,\alpha,\beta} \rangle \) be the constant value of \(\varphi_{a,\alpha,\beta} \varphi_{b,\alpha,\beta} \) and \(g = a\theta_{a,\alpha,\beta} b\theta_{\beta,\alpha,\beta} \). Then
\[
\varphi_{a,\alpha,\delta}^{(k,g)} = \varphi_{a,\delta}^{a} \varphi_{b,\delta}^{b}.
\]

(P3*) Let \(\alpha, \beta \) and \(\delta \) \(Y \) with \(\alpha \beta \geq \delta \).

(i) If \(a \in S^\alpha_a, b \in S^\beta_b \) and \(ab \in Q_{\alpha\beta} \) then \(\psi_{a,\alpha,\delta}^{ab} = \psi_{a,\delta}^{a} \psi_{b,\delta}^{b} \).

(ii) If \(a \in S^\alpha_a, b \in S^\beta_b \) and \(ab \notin Q_{\alpha\beta} \), then \(\psi_{a,\alpha,\beta}^{a} \psi_{b,\alpha,\beta}^{b} \) is a constant mapping acting on the set \(\Lambda_{\alpha\beta} \).

Let \(u = \langle \psi_{a,\alpha,\beta}^{a} \psi_{b,\alpha,\beta}^{b} \rangle \) be the constant value of \(\psi_{a,\alpha,\beta}^{a} \psi_{b,\alpha,\beta}^{b} \) and \(\nu = a\theta_{a,\alpha,\beta} b\theta_{\beta,\alpha,\beta} \). Then
\[
\psi_{a,\alpha,\delta}^{(u,\nu)} = \psi_{a,\delta}^{a} \psi_{b,\delta}^{b}.
\]

(V) Now, form the set \(S = \bigcup_{\alpha \in Y} S_{\alpha} = \bigcup_{\alpha \in Y} (Q_{\alpha} \cup (I_{a} \times T_{\alpha} \times \Lambda_{\alpha})) \) and define a binary operation \("*" \) on \(S \) satisfying the following conditions:

[M1] If \(a \in Q_{\alpha}, b \in Q_{\beta} \) and \(ab \in Q_{\alpha\beta} \), then \(a \ast b = ab \).

[M2] If \(a \in Q_{\alpha}, b \in Q_{\beta} \) and \(ab \notin Q_{\alpha\beta} \), then
\[
(a, g, \lambda) \ast a = (\langle \varphi_{a,\alpha,\beta}^{(a)} \varphi_{b,\alpha,\beta}^{(g)} \rangle, a\theta_{a,\alpha,\beta} b\theta_{\beta,\alpha,\beta}, \langle \psi_{a,\alpha,\beta}^{a} \psi_{b,\alpha,\beta}^{b} \rangle).
\]

[M3] If \(a \in Q_{\alpha}, (i, g, \lambda) \in I_{\beta} \times T_{\beta} \times \Lambda_{\beta} \) then
\[
a \ast (i, g, \lambda) = (\langle \varphi_{a,\alpha,\beta}^{a} \varphi_{b,\alpha,\beta}^{(i)} \rangle, a\theta_{a,\alpha,\beta} g\theta_{\beta,\alpha,\beta}, \langle \psi_{a,\alpha,\beta}^{a} \psi_{b,\alpha,\beta}^{(i,\lambda)} \rangle).
\]

[M4] If \((i, g, \lambda) \in I_{a} \times T_{\alpha} \times \Lambda_{\alpha}, (j, h, \mu) \in I_{\beta} \times T_{\beta} \times \Lambda_{\beta} \) then
\[
(i, g, \lambda) \ast (j, h, \mu) = (\langle \varphi_{a,\alpha,\beta}^{a} \varphi_{b,\alpha,\beta}^{(i)} \rangle, g\theta_{a,\alpha,\beta} h\theta_{\beta,\alpha,\beta}, \langle \psi_{a,\alpha,\beta}^{a} \psi_{b,\alpha,\beta}^{(i,\lambda, j, h, \mu)} \rangle).
\]

It can be verified, by routine checking, that \((S, \ast) \) is a semigroup.

Now we write \(\Sigma = \{ \varphi_{a,\alpha,\beta}, \psi_{a,\alpha,\beta}, \theta_{\alpha,\beta} \mid \alpha, \beta \in Y, \alpha \geq \beta \} \) and call it the structure mapping of the semigroup \(S = \bigcup_{\alpha \in Y} (Q_{\alpha} \cup (I_{a} \times T_{\alpha} \times \Lambda_{\alpha})) \).

We can use the following picture to illustrate the relationship of the structure mappings above, where \(\alpha \geq \beta \) for all \(\alpha, \beta \in Y \).
Summarizing all the above steps, we formulate the following definition.

Definition 3.4. ([36]) The above constructed semigroup S is called the generalized Δ-product of the power breaking partial semigroup Q, the semigroup T, the sets I and Λ with respect to the semilattice Y and the structure mapping Σ. Denote this semigroup by $S = \Delta_{Y,\Sigma}(Q, I, T, \Lambda)$.

Now we state a construction theorem for a C^*-quasiregular semigroup.

Theorem 3.5. ([36]) Let Y be a semilattice, Q be a power breaking partial semigroup, $G = [Y, G_\alpha, \xi_{\alpha,\beta}]$ be a strong semilattice of groups G_α, $I = \bigcup_{\alpha \in Y} I_\alpha$ and $\Lambda = \bigcup_{\alpha \in Y} \Lambda_\alpha$ be a left regular band and a right regular band, respectively. Then, the generalized Δ-product $\Delta_{Y,\Sigma}(Q, I, G, \Lambda)$ is a C^*-quasiregular semigroup.

Conversely, every C^*-quasiregular semigroup can be constructed by a generalized Δ-product $\Delta_{Y,\Sigma}(Q, I, G, \Lambda)$.

A constructed example

We here construct an example of a non-trivial C^*-quasiregular semigroup to illustrate Theorem 3.5.

Step I Let $Y = \{\alpha, \beta, \alpha\beta\}$ be a basic semilattice.

Step II Let $T_\alpha = \{e_0\}, T_\beta = \{g_0\}$ and $T_{\alpha\beta} = \{w_0, a_0, b_0\}$ be groups. Mount each of these groups on its corresponding vertex of Y. Thus $T = [Y; T_\alpha; \xi_{\alpha,\beta}]$ is a strong semilattice of groups which is known as the Clifford semigroup.

The Clifford semigroup $T = [Y; T_\alpha; \xi_{\alpha,\beta}]$ is displayed by the following diagram.
Step III Let $I_\alpha = \{i,j\}$, $I_\beta = \{k,l\}$ and $I_{\alpha\beta} = \{m\}$ be left zero bands. Form a set $I = \bigcup_{\alpha \in Y} I_\alpha$. Similarly, let $\Lambda_\alpha = \{i',j'\}$, $\Lambda_\beta = \{k',l'\}$ and $\Lambda_{\alpha\beta} = \{m'\}$ that are right zero bands. Form a set $\Lambda = \bigcup_{\alpha \in Y} \Lambda_\alpha$.

Step IV On each vertex of the semilattice Y, we form the Cartesian product of the left zero bands and the groups, namely $I_\alpha \times T_\alpha$, $\alpha \in Y$. Similarly, we form $T_\alpha \times \Lambda_\alpha$, $\alpha \in Y$. By combining, we have $S_\alpha^{(1)} = I_\alpha \times T_\alpha \times \Lambda_\alpha$, $\alpha \in Y$. Let $(i,e_0,i') = e,(i,e_0,j') = f,(j,e_0,i') = e',(j,e_0,j') = f';(k,g_0,k') = g,(k,g_0,l') = h,(l,g_0,k') = g',(l,g_0,l') = h';(m,w_0,m') = w,(m,a_0,m') = u$ and $(m,b_0,m') = v$ respectively. Mounting the above semigroups on the corresponding vertices on the semilattice Y, we obtain the following diagram.

Step V Let $Q = Q_\alpha \cup Q_\beta \cup Q_{\alpha\beta}$, where $Q_\alpha = \{a\}$, $Q_\beta = \{b\}$ and $Q_{\alpha\beta} = \emptyset$. Suppose that a^2, b^2, ab and ba are not in Q. Then Q is a power breaking partial semigroup. The presence of such a Q in a semigroup S is an important ingredient to make the semigroup S to be a quasiregular semigroup. In view of this fact, we form the sets $S_\alpha^o = Q_\alpha \cup T_\alpha = \{a,e_0\}$, $S_\beta^o = Q_\beta \cup T_\beta = \{b,g_0\}$ and $S_{\alpha\beta}^o = \{w_0,a_0,b_0\}$ as the components of S.

Construct the structure maps of S by $\theta_{\gamma,\delta} : S_\gamma^o \to T_\delta$ for $\gamma \geq \delta$. We obtain the following diagram.
Step VI For every $\alpha \in Y$, $S^l_\alpha = Q_\alpha \cup (I_\alpha \times T_\alpha)$ and $S^r_\alpha = Q_\alpha \cup (T_\alpha \times \Lambda_\alpha)$. Construct the structure mappings $\varphi_{\gamma,\delta} : S^l_\gamma \rightarrow T(I_\delta)$ and $\psi_{\gamma,\delta} : S^r_\gamma \rightarrow T^*(\Lambda_\delta)$ for $\gamma \geq \delta$ on Y as shown below:

\[
\begin{align*}
\varphi_{\alpha,\alpha} &: (i, e_0) \rightarrow \begin{pmatrix} i & j \\ i & i \end{pmatrix}; \\
& (j, e_0) \rightarrow \begin{pmatrix} i & j \\ j & j \end{pmatrix}; \\
\psi_{\alpha,\alpha} &: (e_0, i') \rightarrow \begin{pmatrix} i' & j' \\ i' & i' \end{pmatrix}; \\
& (e_0, j') \rightarrow \begin{pmatrix} i' & j' \\ j' & j' \end{pmatrix};
\end{align*}
\]

Clearly, the mapping $\varphi_{\alpha,\alpha}$ and $\varphi_{\beta,\alpha\beta}$ are the trivial mappings which map respectively S^l_α and S^l_β onto $T(I_{\alpha\beta})$. Dually, the mappings $\psi_{\alpha,\alpha}$ and $\psi_{\beta,\alpha\beta}$ can be similarly defined.

Step VII Link up all the above semigroup components $S_\alpha = Q_\alpha \cup (I_\alpha \times T_\alpha \times \Lambda_\alpha) = Q_\alpha \cup S^{(1)}_\alpha$ and the corresponding transformation semigroups $T(I_\alpha)(T^*(\Lambda_\alpha))$ for any $\alpha \in Y$ on the vertices of the semilattice Y via the structure mapping. Thus the multiplication “*” on S can be defined accordingly, by considering all the structure mappings on the
components of the semigroup \(S = \bigcup_{\alpha \in Y} (Q_{\alpha} \cup (I_{\alpha} \times T_{\alpha} \times \Lambda_{\alpha})) \).

The following diagram displays the generalized \(\Delta \)-product structure of the constructed example of the \(C^* \)-quasiregular semigroup.

Step VIII Summing up all the above steps, the multiplication “\(* \)” of the semigroup \(S = \bigcup_{\alpha \in Y} S_{\alpha} = \bigcup_{\alpha \in Y} (Q_{\alpha} \cup (I_{\alpha} \times Q_{\alpha} \times T_{\alpha})) \) is defined.

The Cayley table of the semigroup \(S = \{ a, b, e, f, e', f', g, h, g', h', w, u, v \} \) is shown below:

<table>
<thead>
<tr>
<th>(*)</th>
<th>a</th>
<th>b</th>
<th>e</th>
<th>f</th>
<th>e'</th>
<th>f'</th>
<th>g</th>
<th>h</th>
<th>g'</th>
<th>h'</th>
<th>w</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>e</td>
<td>w</td>
<td>e</td>
<td>f</td>
<td>e'</td>
<td>f'</td>
<td>g</td>
<td>h</td>
<td>g'</td>
<td>h'</td>
<td>w</td>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>b</td>
<td>w</td>
<td>e</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>g</td>
<td>h</td>
<td>g</td>
<td>h</td>
<td>w</td>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>e</td>
<td>f</td>
<td>e</td>
<td>f</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>u</td>
</tr>
<tr>
<td>f</td>
<td>e</td>
<td>w</td>
<td>e</td>
<td>f</td>
<td>e</td>
<td>f</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>e'</td>
<td>e'</td>
<td>w</td>
<td>e'</td>
<td>f'</td>
<td>e'</td>
<td>f'</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>f'</td>
<td>e'</td>
<td>w</td>
<td>e'</td>
<td>f'</td>
<td>e'</td>
<td>f'</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>g</td>
<td>w</td>
<td>g</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>g</td>
<td>h</td>
<td>g</td>
<td>h</td>
<td>w</td>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>h</td>
<td>w</td>
<td>g</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>g</td>
<td>h</td>
<td>g</td>
<td>h</td>
<td>w</td>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>g'</td>
<td>w</td>
<td>g'</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>g'</td>
<td>h'</td>
<td>g'</td>
<td>h'</td>
<td>w</td>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>h'</td>
<td>w</td>
<td>g'</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>g'</td>
<td>h'</td>
<td>g'</td>
<td>h'</td>
<td>w</td>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>w</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>u</td>
<td>v</td>
</tr>
<tr>
<td>v</td>
</tr>
</tbody>
</table>

15
4 Left wreath products and wreath products

The concept of an abundant semigroup was first introduced by J. B. Fountain in 1971 [5]. To state the definition of an abundant semigroup, we first cite a set of relations on the semigroup \(S \) called the Green “\(*\)” relations on a semigroup \(S \).

\[
L^* = \{(a, b) \in S \times S \mid (\forall x, y \in S^1) ax = ay \Leftrightarrow bx = by\},
\]
\[
R^* = \{(a, b) \in S \times S \mid (\forall x, y \in S^1) xa = ya \Leftrightarrow xa = yb\},
\]
\[
H^* = L^* \land \ R^*,
\]
\[
D^* = L^* \lor \ R^*,
\]
\[
J^* = \{(a, b) \in S \times S \mid J^*(a) = J^*(b)\},
\]

where \(J^*(a) \) denote the principal \(*\)-ideal generated by the element \(a \) in \(S \) (see [5]).

Clearly, on any semigroup \(S \) we have \(L \subseteq L^* \) and \(R \subseteq R^* \). It is easy to see that for regular elements \(a, b \in S \), \((a, b) \in L^* \) if and only if \((a, b) \in L \). Moreover, we can easily see that \(L^* \) is a right congruence and \(R^* \) is a left congruence on \(S \), respectively.

An abundant semigroup \(S \) is a semigroup in which each \(L^* \)-class and each \(R^* \)-class contains an idempotent. It is clear that a regular semigroup is abundant. In fact, abundant semigroups can be regarded as natural generalizations of regular semigroups.

An abundant semigroup \(S \) is called an \(L^* \)-inverse semigroup if \(S \) is an IC semigroup whose idempotents form a left regular band (for details, see [26]).

To obtain structure of \(L^* \)-inverse semigroups, the concept of left wreath product of semigroups was introduced by Ren and Shum in [26].

Let \(\Gamma \) be a type \(A \) semigroup with semilattice \(Y \) of idempotents. Let \(B = \bigcup_{\alpha \in Y} B_\alpha \) be a semilattice decomposition of a left regular band \(B \) into left zero bands \(B_\alpha \).

Because the type \(A \) semigroup \(\Gamma \) is abundant, we can always identify the element \(\gamma \in \Gamma \) by its corresponding idempotent \(\gamma^\dagger \in R^*_\gamma(\Gamma) \cap E \) or by \(\gamma^* \in L^*_\gamma(\Gamma) \cap E \), respectively. Moreover, since the type \(A \) semigroup \(\Gamma \) is also an IC abundant semigroup, there is a connecting isomorphism \(\eta : \langle \omega^\dagger \rangle \rightarrow \langle \omega^* \rangle \) such that \(\alpha \omega = \omega(\alpha \eta) \) for any \(\alpha \in \langle \omega^\dagger \rangle \) and \(\omega \in \Gamma \).

Now, we form the set \(B \bowtie \Gamma = \{(e, \gamma) \mid e \in B_{\gamma^\dagger}, \gamma \in \Gamma \} \). In order to make this set \(B \bowtie \Gamma \) a semigroup, we need to introduce a multiplication “\(*\)” defined on the set \(B \bowtie \Gamma \) by the following mapping. Firstly, we define a mapping \(\varphi : \Gamma \rightarrow \text{End}(B) \) by \(\gamma \mapsto \sigma_\gamma \), where \(\sigma_\gamma \in \text{End}(B) \) which is the endomorphism semigroup on \(B \). This mapping satisfies
following properties:

(P1) Absorbing: for each $\gamma \in \Gamma$ and $\alpha \in Y$, we have $B_\alpha \sigma_\gamma \subseteq B_{(\gamma \alpha)^!}$. In particular, if $\gamma \in Y$, then σ_γ is an inner endomorphism on B such that $\sigma_\gamma = fe$ for some $f \in B_\gamma$ and all $e \in B$.

(P2) Focusing: for $\alpha, \beta \in \Gamma$ and $f \in B_{(\alpha \beta)^!}$, we have $\sigma_\beta \sigma_\alpha \delta_f = \sigma_{\alpha \beta} \delta_f$, where δ_f is an inner endomorphism induced by f on B satisfying $h \delta_f = fh$ for all $h \in B$.

(P3) Homogenizing: for $e \in B_{\omega^!}, g \in B_{\tau^!}$ and $h \in B_{\xi^!}$, if $\omega \tau = \omega \xi$ and $eg\omega = eh\omega$, then $fg\omega = fh\omega$, for any $f \in B_{\omega^!}$.

(P4) Idempotent connecting: assume that for any $\omega \in \Gamma$, η is the connecting isomorphism which maps $\langle \omega^! \rangle$ to $\langle \omega^* \rangle$ by $\alpha \mapsto \alpha \eta$. If $(e, \omega^!)$ and $(f, \omega^*) \in B \bowtie \Gamma$, then there is a bijection $\theta : \langle e \rangle \to \langle f \rangle$ such that

(i) $e \theta = f$ and $g = e (g \theta) \omega^*$, for $g \in \langle e \rangle$;

(ii) for $g \in \langle e \rangle$ and $\alpha \in \langle \omega^! \rangle, (g, \alpha) \in B \bowtie \Gamma$ if and only if $(g \theta, \alpha \eta) \in B \bowtie \Gamma$.

Equipped with the above mapping φ, we hence define a multiplication "*" on $B \bowtie \Gamma$ by

$$(e, \omega) * (f, \tau) = (ef\omega, \omega \tau)$$

for any $(e, \omega), (f, \tau) \in B \bowtie \Gamma$, where $f\omega = f\sigma_\omega$.

It can be verified that the multiplication "*" defined above for the set $B \bowtie \Gamma$ is associative. We call the semigroup a left wreath product of a left regular band B and a type A semigroup Γ under a mapping φ, denoted by $B \bowtie \varphi \Gamma$.

We are now going to establish a structure theorem for L^*-inverse semigroups.

Theorem 4.1. ([26], Theorem 4.1) A semigroup S is an L^*-inverse semigroup if and only if S is a left wreath product of a left regular band B and a type A semigroup Γ.

In [27], we call an IC abundant semigroup S a Q^*-inverse semigroup if the set of its idempotents E forms a regular band, i.e. E satisfies the identity $efege = efge$, for all e, f and g in E.

Suppose that S is a Q^*-inverse semigroup whose set of idempotents E forms a regular band. Denote the J-class containing the element $e \in E$ by $E(e)$. We first have the following result.

Theorem 4.2. ([27], Theorem 3.2) If an equivalence relation δ on S is defined by $a \delta b$ if and only if $b = eaf$ and $a = gbh$ for some $e \in E(a^+), f \in E(a^*), g \in E(b^+)$ and $h \in E(b^*)$, then the equivalence relation δ is the smallest type A good congruence on S. 17
Let S be a Q^*-inverse semigroup with a regular band of idempotents E. Define relations μ_l and μ_r on S as follows:

$$(a, b) \in \mu_l \iff (xa, xb) \in L^* \quad (x \in E),$$

$$(a, b) \in \mu_r \iff (ax, bx) \in R^* \quad (x \in E).$$

Put $\rho_1 = \delta \cap \mu_r$ and $\rho_2 = \delta \cap \mu_l$ on S (see [27]). We are now able to establish the following theorem for Q^*-inverse semigroups.

To obtain structure theory for Q^*-inverse semigroups, the concept of the wreath product of semigroups was introduced by Ren and Shum in [27] as follows:

In the wreath product of semigroups, we need the following ingredients:

(a) Y: a semilattice.

(b) Γ: a type A semigroup whose set of idempotents is the semilattice Y.

(c) I: a left regular band such that $I = \bigcup_{\alpha \in Y} I_{\alpha}$, where I_{α} is a left zero band for all $\alpha \in Y$.

(d) Λ: a right regular band such that $\Lambda = \bigcup_{\alpha \in Y} \Lambda_{\alpha}$, where Λ_{α} is a right zero band for all $\alpha \in Y$.

We now form the following sets:

$I \Join \Gamma = \{(e, \omega) \mid \omega \in \Gamma, e \in I_{\omega^+}\}$,

$\Gamma \Join \Lambda = \{(\omega, i) \mid \omega \in \Gamma, i \in \Lambda_{\omega^*}\}$,

and

$I \Join \Gamma \Join \Lambda = \{(e, \omega, i) \mid \omega \in \Gamma, e \in I_{\omega^+} \text{ and } i \in \Lambda_{\omega^*}\}$.

Since $\omega \in \Gamma$ and Γ is a type A semigroup, there are some idempotents $\omega^+ \in R^*_\omega(\Gamma) \cap E(\Gamma)$ and $\omega^* \in L^*_\omega(\Gamma) \cap E(\Gamma)$. Also since the set of idempotents of Γ forms a semilattice, ω^+ and ω^* are in Y. This illustrates that the sets $I \Join \Gamma, \Gamma \Join \Lambda$, and $I \Join \Gamma \Join \Lambda$ are well-defined. We only need to define an associative multiplication on the set $I \Join \Gamma \Join \Lambda$ so that the set $I \Join \Gamma \Join \Lambda$ under the multiplication turns out to be a semigroup.

Before we define a multiplication on $I \Join \Gamma \Join \Lambda$, we need to give a description for the structure mappings.

Define a mapping $\varphi : \Gamma \to \text{End}(I)$ by $\gamma \mapsto \sigma_\gamma$ for $\gamma \in \Gamma$ and $\sigma_\gamma \in \text{End}(I)$ satisfying the following conditions:

(P1) For each $\gamma \in \Gamma$ and $\alpha \in Y$, we have $I_{\alpha} \sigma_\gamma \subseteq I_{(\gamma \alpha)^+}$. In particular, if $\gamma \in Y$ then σ_γ is an inner endomorphism on I such that there exists $g \in I_{\gamma}$ with $e^{\gamma \gamma} = ge$, for all
$e \in I$, where e^{σ_γ} denotes $e\sigma_\gamma$.

(P2) For $\alpha, \beta \in \Gamma$ and $f \in I_{(\alpha\beta)}^\dagger$, we have $\sigma_\beta \sigma_\alpha \delta_f = \sigma_\alpha \delta_f \sigma_\beta$, where δ_f is an inner endomorphism induced by f on I satisfying $h^{\delta_f} = fh = fhf$, for all $h \in I$.

(P3) For $e \in I_{\omega_1}, g \in I_{\tau_1}$ and $h \in I_{\xi_1}$, if $\omega_\tau = \omega_\xi$ and $eg^{\omega_\tau} = eh^{\omega_\tau}$, then $fg^{\omega_\tau} = fh^{\omega_\tau}$, for all $f \in I_{\omega_\tau}$.

(P4) Assume that for any $\omega \in \Gamma, \eta$ is the connecting isomorphism which maps $\langle \omega^1 \rangle$ to $\langle \omega^* \rangle$ by $\alpha \mapsto \alpha \eta$. If (e, ω^1) and $(f, \omega^*) \in I \bowtie \Gamma$, then there is a bijection $\theta : \langle e \rangle \to \langle f \rangle$ such that

(i) $ef = f$ and $ge^{\omega_\tau} = e(g\theta)^{\omega_\tau}$ for any $g \in \langle e \rangle$ and $\alpha \in \langle \omega^1 \rangle$.

(ii) For any $g \in \langle e \rangle$ and $\alpha \in \langle \omega^1 \rangle$, $(g, \alpha) \in I \bowtie \Gamma$ if and only if $(g\theta, \alpha \eta) \in I \bowtie \Gamma$.

Similarly, define a mapping $\psi : \Gamma \to \text{End}(\Lambda)$ by $\gamma \mapsto \rho_\gamma$ for $\gamma \in \Gamma$ and $\rho_\gamma \in \text{End}(\Lambda)$ satisfying the following conditions:

(P1)' For each $\gamma \in \Gamma$ and $\alpha \in Y$, we have $\Lambda_\alpha \rho_\gamma \subseteq \Lambda_{(\alpha \tau)^\gamma}$. In particular, if $\gamma \in Y$, then ρ_γ is an inner endomorphism on Λ such that there exists $i \in \Lambda_\gamma$ with $ji^\rho_\gamma = ji$ for all $j \in \Lambda$, where ji^ρ_γ denotes $j\rho_\gamma$.

(P2)' For $\alpha, \beta \in \Gamma$ and $i \in \Lambda_{(\alpha\beta)^*}$, we have $\rho_\alpha \rho_\beta \varepsilon_i = \rho_\alpha \varepsilon_i \varepsilon_i$, where ε_i is an inner endomorphism induced by i on Λ such that $j^\varepsilon_i = ji = ji^\varepsilon_i$ for any $j \in \Lambda$.

(P3)' For $i \in \Lambda_\omega^*, j \in \Lambda_\tau^*$ and $k \in \Lambda_\xi^*$, if $\tau = \xi_\omega$ and $j^\rho_i = k^\rho_i$, then $j^\rho_\omega m = k^\rho_\omega m$ for all $m \in \Lambda_\omega^*$.

(P4)' Assume that for any $\omega \in \Gamma, \eta$ is the connecting isomorphism which maps $\langle \omega^1 \rangle$ to $\langle \omega^* \rangle$ by $\alpha \mapsto \alpha \eta$. If (ω^1, j) and $(\omega^*, i) \in I \bowtie \Lambda$, then there is a bijection $\theta' : \langle i \rangle \to \langle j \rangle$ such that the following conditions hold:

(i) $j\theta' = i, k^\rho_i = i^{\rho \eta}(k\theta')$, for any $k \in \langle j \rangle$ and $\alpha \in \langle \omega^1 \rangle$;

(ii) For any $k \in \langle i \rangle$ and $\alpha \in \langle \omega^1 \rangle$, $(\alpha, k) \in I \bowtie \Lambda$ if and only if $(\alpha \eta, k\theta') \in I \bowtie \Lambda$.

After gluing up the above components I, Γ and Λ together with the mappings φ and ψ, we now define a multiplication on the set $I \bowtie \varphi \bowtie \psi \Lambda$ by

$$(e, \omega, i) \ast (f, \tau, j) = (ef^{\omega_\tau}, \omega_\tau, i^\rho_\tau),$$

for any $(e, \omega, i), (f, \tau, j) \in I \bowtie \Gamma \bowtie \Lambda$, where $f^{\omega_\tau} = f\sigma_\omega$ and $i^\rho_\tau = \rho_\tau$.

By using the properties (P1), (P2), (P1)', and (P2)', we can easily verify that the above multiplication "\ast" on $I \bowtie \varphi \bowtie \psi \Lambda$ is associative. We now call the above constructed semigroup the wreath product of I, Γ and Λ with respect to φ and ψ, and denote it by $Q = I \bowtie \varphi \bowtie \psi \Lambda$.

Theorem 4.3. ([27], Theorem 4.4) The wreath product $I \bowtie \varphi \bowtie \psi \Lambda$ of a left regular band I, a type A semigroup Γ and a right regular band Λ with respect to the mappings φ and ψ is a Q^*-inverse semigroup.
Conversely, every Q^*-inverse semigroup S can be expressed by a wreath product of $I \bowtie \varphi \Gamma \bowtie \psi \Lambda$.

Remark 1. The class of Q^*-inverse semigroups contains several interesting classes of semigroups as its special subclasses. We only discuss some of these special subclasses as follows.

(a) L^*-inverse semigroups and R^*-inverse semigroups

By Theorem 4.3, a Q^*-inverse semigroup S can be expressed as a wreath product $I \bowtie \varphi \Gamma \bowtie \psi \Lambda$ of I, Γ, and Λ with respect to the mappings φ and ψ, where Γ is a type A semigroup, I and Λ are respectively a left regular band and a right regular band. In Theorem 4.3, if $\Lambda = \emptyset$, then $S = I \bowtie \Gamma$, which is an L^*-inverse semigroup. Similarly, if we let $I = \emptyset$, then $\Gamma \bowtie \psi \Lambda$ becomes an R^*-inverse semigroup. Thus, the class of L^*-inverse semigroups and the class of R^*-inverse semigroups are two special subclasses of the class of Q^*-inverse semigroups. In this case, we can easily reobtain Theorem 4.2 for structure of L^*-inverse semigroups, as a corollary of Theorem 4.3.

(b) Quasi-inverse semigroups

We know that a quasi-inverse semigroup is a regular semigroup whose set of idempotents forms a regular band. It is clear that a quasi-inverse semigroup is a special Q^*-inverse semigroup.

When S is a quasi-inverse semigroup, we can define a relation δ on S by $a \delta b$ if and only if $b = eaf$ for some $e \in E(aa')$ and $f \in E(a'a)$, where a' is an inverse element of a. It can be immediately seen from [26] that δ is the smallest inverse semigroup congruence on S and so $\Gamma = S/\delta$ is the greatest inverse semigroup homomorphism image of S. Obviously, the inverse semigroup $\Gamma = S/\delta$ must be a type A semigroup whose set of idempotents forms a semilattice. As a result, a wreath product $I \bowtie \varphi \Gamma \bowtie \psi \Lambda$ of S, regarded as a Q^*-inverse semigroup, can be simplified by using the so called **half-direct product** (in brevity, $H.D.$-product) of a quasi-inverse semigroup given by M. Yamada in [38] as described in the following Theorem 4.4.

Theorem 4.4. ([38], Theorem 6) Let S be a quasi-inverse semigroup whose set of idempotents forms a regular band E. Let δ be the smallest inverse congruence on S such that $\Gamma = S/\delta$ is the greatest inverse semigroup induced by δ and let Y be the semilattice of Γ. Define the congruences η_1, η_2 on E by $e \eta_1 f$ if and only if eRf; $e \eta_2 f$ if and only if eLf, respectively.
For $X \subseteq E$, write $\tilde{X} = \{ \tilde{e} \mid e \in X \}$ and $\hat{X} = \{ \hat{e} \mid e \in X \}$, where \tilde{e} and \hat{e} are the η_1-class and the η_2-class containing $e \in X$, respectively. Then the following statements hold:

(i) $E/\eta_1 = \tilde{E}$ is a left regular band such that $\tilde{E} = \bigcup_{a \in Y} \tilde{E}_a$, where every \tilde{E}_a is a left zero band; $E/\eta_2 = \hat{E}$ is a right regular band such that $\hat{E} = \bigcup_{a \in Y} \hat{E}_a$, where each \hat{E}_a is a right zero band, for every $a \in Y$.

(ii) S is isomorphic to an H.D.-product of \tilde{E}, Γ and \hat{E} with respect to the mappings φ' and ψ', respectively. Conversely, any H.D.-product of a left regular band $I = \bigcup_{a \in Y} \Lambda_a$, an inverse semigroup Γ and a right regular band $\Lambda = \bigcup_{a \in Y} \Lambda_a$ with respect to the mappings φ' and ψ' is a quasi-inverse semigroup S, where Γ is the greatest inverse semigroup homomorphic image of S and Y is the semilattice of idempotents of Γ.

K. Kimura in 1958 first considered [15] the spined product of semigroups as follows: if T_1 and T_2 are two semigroups having a common homomorphic image H, and if $\phi : T_1 \to H$ and $\psi : T_2 \to H$ are homomorphisms onto H, then the spined product of T_1 and T_2 with respect to H, ϕ and ψ is defined by the set $\{(t_1, t_2) \in T_1 \times T_2 \mid t_1\phi = t_2\psi\}$. In particular, we denote the spined product of T_1 and T_2 with respect to H, ϕ and ψ by $T_1 \times_{\phi, H} T_2$.

For the Q^*-inverse semigroups, we have the following constructions.

Theorem 4.5 ([27], Theorem 5.1) A semigroup S is a Q^*-inverse semigroup if and only if S is a spined product of an L^*-inverse semigroup $S_1 = I \bowtie_{\varphi} \Gamma$ and an R^*-inverse semigroup $S_2 = \Gamma \bowtie_{\psi} \Lambda$ with respect to a type A semigroup Γ.

The relationship between the L^*-inverse semigroup S_1, the R^*-inverse semigroup S_2 and the type A semigroup Γ can be expressed as the following picture, where

$$S = S_1 \times_{\Theta} S_2 = \{((e, \omega), (\omega, i)) \in S_1 \times S_2 \mid (e, \omega)\Theta_1 = (\omega, i)\Theta_2\}$$

with a multiplication “\circ” given by

$$((e, \omega), (\omega, i)) \circ ((f, \tau), (\tau, j)) = ((ef^{\omega\omega}, \omega\tau), (\omega\tau, i^{\omega\omega}j)).$$
References

[38] Yamada, M., Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup Forum, 6 (1973), 113–128.
